讲座题目: Profile GMM Estimation of Panel Data Models with Interactive Fixed Effects
主讲嘉宾:洪圣杰 副教授 (中央财经大学经济学院)
讲座时间:2023年4月18日(周二)上午10:00--12:00
讲座地点:经济学院407会议室
摘要:This paper studies panel data models with interactive fixed effects where the regressors are allowed to be correlated with the idiosyncratic error terms. We propose a two-step profile GMM estimation procedure to estimate the parameters of interest. In the first step we obtain a preliminary consistent estimate of the slope coefficient via a nuclear-norm-regularization (NNR) based profile GMM procedure. In the second step, via an iterative procedure, we conduct post-NNR profile GMM estimation of the slope coefficient, factors, and factor loadings, with an improved convergence rate for the estimate of the slope coefficient. We establish the asymptotic properties of the preliminary estimates and the iterative estimates, and propose an efficient profile GMM estimator. We also study the determination of the number of factors and propose Hausman tests for the exogeneity of the regressor. Monte Carlo simulations suggest that the proposed estimation and testing methods work well in the determination of the number of factors, the estimation of the model parameters and the test for exogeneity. As an empirical application, we apply our model and method to study the price elasticity of U.S. imports.
论文简介:本文把机器学习的新兴方法核范数正则化(nuclear norm regularization,NNR) 与经典广义矩法 (GMM) 深度融合,提出了对于存在内生性解释变量和交互固定效应的面板模型的估计方法。该研究的主要贡献在于:一、在交互固定效应存在的同时允许解释变量具有内生性,大幅拓展了交互固定效应面板数据模型在实证研究中的应用范围;二、核范数正则化的机器学习方法与广义矩法估计的深度融合,使得此项研究提出的新估计方法在算法表现上更稳健和省时,并且不依赖一些常见的为保障初始估计一致性所做的技术性假设(这些假设常见于当前主流的单纯基于主成分分析的交互固定效应模板估计方法中);三、建立了NNR估计量的渐进分布理论,弥补目前机器学习领域相关理论支撑的不足;四、该研究为使用微观数据估计国际贸易中的一个重要参数,进口需求的价格弹性,提供了重要的计量框架。
作者介绍:洪圣杰,中央财经大学经济学院长聘副教授。研究课题涉及高维数据模型、机器学习方法、结构性分析和中国经济等方向。2012年在美国威斯康辛大学麦迪逊分校获得经济学博士学位。2012年9月至2021年7月在清华大学经济管理学院任助理教授。学术研究发表在Journal of Econometrics,Journal of Comparative Economics, 《管理世界》、《金融研究》和《中国工业经济》等国际国内高质量学术期刊,并主持国家自然科学基金(青年)等科研项目。